

B.E. /B.Tech / B. Arch (Full Time) - END SEMESTER EXAMINATIONS, NOV/DEC 2024

(Common to all the Branches)

Semester 1

MA23151 / MA23C01 MATRICES AND CALCULUS
(Regulation2023)

Time:3hrs

Max.Marks: 100

CO1	Use the matrix algebra methods for solving practical problems.
CO2	Use differential calculus ideas on several variable functions.
CO3	Apply different methods of integration in solving practical problems by using Beta and Gamma functions.
CO4	Apply multiple integral ideas in solving areas and volumes problems.
CO5	Apply the concept of vectors in solving practical problems.

BL - Bloom's Taxonomy Levels

(L1-Remembering, L2-Understanding, L3-Applying, L4-Analysing, L5-Evaluating, L6-Creating)

PART- A(10x2=20Marks)
(Answer all Questions)

Q.No.	Questions	Marks	CO	BL
1	If $A = \begin{pmatrix} -1 & 0 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{pmatrix}$ find the eigenvalues of A^{-1} .	2	1	L2
2	Write down the index and the nature of the quadratic form $2x^2 + 3y^2 - 7z^2$.	2	1	L2
3	Find the total derivative du/dt , if $u = x^2 + y^2$, $x = at^2$, $y = 2at$.	2	2	L2
4	Find $\partial^2 u / \partial x \partial y$ if $u = x^y$.	2	2	L2
5	Test whether the improper integral $\int_0^{\infty} \frac{dx}{1+x^2}$ is convergent or not.	2	3	L2
6	Write down the reduction formula for gamma function. Hence find $\Gamma(5/2)$.	2	3	L1
7	Sketch the region of integration in $\int_0^a \int_{\sqrt{ax}}^a f(x, y) dx dy$.	2	4	L2
8	Evaluate: $\int_0^1 \int_0^1 \int_0^1 xy^2 z dx dy dz$.	2	4	L2
9	Find the directional derivative of $\phi = xy^2 + yz^3$ at the point $(2, -1, 1)$ in the direction of the vector $\hat{i} + 2\hat{j} + 2\hat{k}$.	2	5	L2
10	Prove that $\vec{E} = (-x^2 + yz)\hat{i} + (4y - z^2 x)\hat{j} + (2xz - 4z)\hat{k}$ is solenoidal.	2	5	L1

PART- B(5x 13=65Marks)

Q.No.	Questions	Marks	CO	BL
11 (a)(i)	Find the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$.	7	1	L3
11(a) (ii)	Find the characteristic equation of $A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$. Using Cayley Hamilton theorem find A^{-1} . (Do not verify Cayley Hamilton theorem.)	6	1	L3
OR				
11 (b)	Reduce the quadratic form $8x^2 + 7y^2 + 3z^2 - 12xy + 4xz - 8yz$ into its canonical form using an orthogonal transformation.	13	1	L3
12 (a)(i)	If $u = \tan^{-1} \left(\frac{x^3+y^3}{x+y} \right)$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$. Hence find $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.	7	2	L3
12 (a)(ii)	If $u = \log(x^3 + y^3 + z^3 - 3xyz)$, then prove that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right)^2 u = \frac{-9}{(x+y+z)^2}$.	6	2	L3
OR				
12 (b)(i)	The temperature T at any point (x, y, z) in space is $T = 400xyz^2$. Find the highest temperature on the surface of the unit sphere $x^2 + y^2 + z^2 = 1$.	7	2	L3
12(b)(ii)	If $x + y + z = u$, $y + z = uv$, $z = uvw$, then prove that $\frac{\partial(x,y,z)}{\partial(u,v,w)} = u^2v$.	6	2	L3
13 (a)(i)	Using the method of differentiation under integral sign, prove that $\int_0^\infty \frac{e^{-x}}{x} (1 - e^{-ax}) dx = \log(1 + a)$, where $a > -1$.	7	3	L4
13 (a)(ii)	Evaluate the integrals in terms of gamma functions and hence prove that $\int_0^1 \frac{x^2}{\sqrt{1-x^4}} dx \times \int_0^1 \frac{1}{\sqrt{1-x^4}} dx = \pi/4$.	6	3	L3
OR				
13 (b)(i)	Prove that the improper integral $\int_1^\infty \frac{dx}{x^p}$ converges for $p > 1$ and diverges for $p \leq 1$.	7	3	L4



13(b)(ii)	Prove that $\beta(n, n) = \frac{1}{2^{2n-1}} \beta(n, \frac{1}{2})$ and hence prove that $\Gamma(n)\Gamma\left(n + \frac{1}{2}\right) = \frac{\sqrt{\pi}}{2^{2n-1}} \Gamma(2n)$.	6	3	L3
14 (a)(i)	Find the volume bounded by the cylinder $x^2 + y^2 = 4$, and the planes $y + z = 4$, $z = 0$.	7	4	L3
14 (a) (ii)	By changing the order of integration evaluate $I = \int_0^1 \int_0^{1-y} xy \, dx \, dy$.	6	4	L4
OR				
14 (b)(i)	Find the volume of the tetrahedron bounded by the co-ordinate planes and the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.	7	4	L3
14(b)(ii)	By changing into polar co-ordinates evaluate $\int_0^{\infty} \int_0^{\infty} e^{-(x^2+y^2)} \, dx \, dy$.	6	4	L4
15 (a) (i)	State Green's theorem. Using Green's theorem evaluate $\int_C (x^2 + y^2) \, dx - 2xy \, dy$ where C is the boundary of the rectangle with vertices $(0,0), (a,0), (a,b), (0,b)$.	7	5	L3
15(a)(ii)	Is the vector field $\vec{F} = (2xy)\hat{i} + (x^2 + 2yz)\hat{j} + (y^2 + 1)\hat{k}$ irrotational? If so, find its scalar potential.	6	5	L3
OR				
15 (b)	Verify Gauss divergence theorem for $\vec{F} = 4xz\hat{i} - y^2\hat{j} + yz\hat{k}$ taken over the cube defined by the planes $x = 0, x = 1, y = 0, y = 1, z = 0, z = 1$.	13	5	L3

PART- C(1x 15=15Marks)

(Q.No.16 is compulsory)

Q.No.	Questions	Marks	CO	BL
16.(i)	Diagonalize $A = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{pmatrix}$, if possible.	8	1	L5
16 (ii)	Find the Taylor series expansion of $f(x, y) = x^2y + 3y - 2$ in powers of $(x - 1)$ and $(y - 2)$ upto third degree terms.	7	2	L5

